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Abstract

Depletion of stratospheric O, layer is leading to an increase in UV-B radiation on
earth surface. Along with UV-B other abiotic stress factors are also changing
simultaneously. Present review is summarizing the information available on the
interactive effect of UV-B with other abiotic stress factors on various plant species.
This article is an overview of literature of existing studies on the interactive effects
of UV-B with water stress, nutrient stress, elevated carbon dioxide (CO,), heavy
metal and ozone (O,). Experimental conditions along with doses of stress were
also compared to make the clear view of difference in response of plants in natural
and controlled conditions. Among all these studies only 25% studies were
conducted in field conditions however rest of them were performed under
controlled environment. Results of interactive effect at various levels as growth,
anatomy, physiology, biochemical changes and yield were given in terms of
increase and decrease. Mode of interaction was also discussed with other factors.
Carbon dioxide and nutrient stress were found to alter the source and sink balance
of carbon in plants which in turn provides protection against UV-B. Pathways for
synthesis of UV-B and water stress induced secondary metabolites and signaling
of defense gene expressions with heavy metals and UV-B were also compared in
plants. Elevated carbon dioxide, nutrient stress were found to ameliorate the
negative response of UV-B in most of the plant species however heavy metals,
water stress and elevated level of O, were found to worsen the effect of UV-B in
most of the studies. Interactive response of UV-B with other abiotic stresses is a
broad area and results of few studies can't withdraw a definite conclusion. Field
studies are also scanty and further needed to define the actual performance of
plants in present and future environment.

Keywords: UV-B, CO,, heavy metal, water stress, nutrient stress, O,, growth,
physiology, yield.

Introduction
Global climate is result of a complex system of various atmospheric processes and their
products. Due to subsequent increase in industrialization, urbanization and agricultural practices
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our atmosphere is undergoing a transition with the simultaneous increase in several abiotic
factors such as UV-B, CO,, O,, temperature, heavy metals and excessive nutrients. With
increasing trend of these abiotic factors the most important question to be answered is, whether
these factors can counteract to nullify their negative effects or interaction may be antagonistic,
synergistic or additive. During last few decades convincing evidences have been reported
regarding the reduction in stratospheric O, layer due to emission of chlorine and bromine
containing compounds. As these CFCs have a high halflife ranging from 50 to 150 years and they
can remain for the longer period in the upper atmosphere so it will take 2065 to return to the pre
1980 level if no further release will occur (UNEP, 2006). Since the discovery of ozone hole in
1979 by Farman and colleagues, consequential increase in solar UV-B is becoming a threat to all
life forms on earth (Rozema et al., 2001). Goddard Institute of Space Studies (GISS) estimated
that the maximum annual increase in Northern Hemispheric UV dose will be 14% in 2010-2020
(Taalas et al. 2000, 2002). Along with increase in UV-B other abiotic factors are also increasing
simultaneously. Under natural field conditions it is common practice for a plant to encounter
more than one environmental stress simultaneously. Depending on the mode of action of stress
factors and plant species, net effect of two or more concomitant stresses can be antagonistic,
additive or synergistic and it can also be possible that they can't influence each other's response.
Present review is an attempt to summarize various studies pertaining with interaction of UV-B
and other stress factors and emphasizing the possible mechanism behind their differential
response.

Interaction of UV-B and CO,

Increasing use of non-renewable natural resources especially fossil fuel is causing a
steady increase of CO, concentration. Atmospheric CO, has increased from pre industrial value of
280 to the current level of 380 pmol mol”' (IPCC, 2001) and according to predictions this may
increase upto 700 umol mol™ by the end of this century (IPCC, 2007). Since CO, is a substrate of
photosynthesis, its very important to assess how plants modify photosynthesis particularly
Rubisco that catalyze CO, fixation. Various studies have been conducted to assess the impact of
enhanced UV-B and CO, on plant. Lavola et al. (2000) have reported that 700 umol mol"
concentration of CO, is sufficient to ameliorate the harmful effect of UV-B (8.6 k] m” day™) on
birch seedlings however Tegelberg et al. (2008) have found similar level of CO, to be ineffective
in ameliorating the harmful effect of UV-B (7.95 kJ m” day") on birch plants. Under CO,
enrichment the increased allocation of carbon is favored towards synthesis of condensed tannin
than to other phenolic compounds. With the increases in carbon availiability under the enhanced
UV-B more carbon allocation is reported for growth, lignifications, enhanced activity of enzymes
and repairing processes (Lavola etal. 2000). Both UV-B and CO, are known to enhance flavonoid
synthesis in plants but the quercetin glycosides were reported to be the most responsive flavonoid
towards UV-B and CO, (Lavola et al. 1997, 2000). In a gymnospermic plant Pinus taeda,
enhanced concentrations of CO, have modified the response of UV-B towards growth and
biomass allocation of plant (Sullivan and Teramura, 1994). At CO, level of 350 umol mol™
biomass was preferentially allocated to shoot components while at elevated level of 650 pmol
mol it was preferred to root components at enhanced UV-B. Sullivan and Teramura, (1994) have
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stated that increase in CO, favors carbon gain in plants by reducing diffusional limitation,
lowering photorespiration and water use efficiency. Since UV-B also restricts growth of above
ground part (leaf elongation, expansion etc.), both factors favor more allocation of biomass
towards root and thus resulted a strong interactive effect of UV-B and CO, on biomass portioning.

Enhanced level of UV-B has reduced the stimulatory effect of CO, on biomass of Vicia
faba plant but no interaction was noted with respect to photosynthetic parameters (Tosserams et
al. 2001). The major responsive trait of plant towards elevated CO, is enhanced photosynthesis
especially in C,plants. Aftera certain level of CO, plant shows acclimation response. Acclimation
is nothing but down regulation of CO, fixation under elevated CO, due to the imbalance between
supply and demand of assimilates. Increased accumulation of soluble carbohydrate and starch in
leaves may down regulate the expression of nuclear photosynthetic genes including Rubisco
(Pandurangam etal. 2006). Apart from direct end product feedback inhibition indirect decrease in
photosynthesis also occurs through decrease in photosynthetic enzymes and reduced stomatal
conductance (Sttit, 1991, Dijkstra et al. 1993). Acclimation can be recovered with demand of
additional sinks for carbohydrate with the onset of flowering and fruiting. Tosserams et al. (2001)
have also reported photosynthetic acclimation after 31 days of treatment and at that time total
carbohydrate content was 11%. Similar response was noticed by Visser et al. (1997) in
photosynthesis of Vicia faba but both of them changed the leaf optical properties of plant. Koti et
al. (2005, 2007) have studied the growth, photosynthesis and floral attributes of another
leguminous crop Glycine max and reported that elevated level of CO, may compensate the
damaging effect of UV-B on growth and development of plants. However the damage caused by
UV-B on flower, pollen morphology, production, germination and tube length can not be
ameliorated by enhanced CO, (Koti et al. 2005). In C, plant Dimorphotheca pluvialis elevated
COQ, altered reproductive phenology (delayed) and reproductive success and this effect may be
mitigated by enhanced UV-B conversely and no any interaction was observed under combined
tretment (Wand et al. 1996). Different parameters of cotton plant responded differentially
towards elevated UV-B and CO,. Zhao et al (2003) have not found elevated CO, to be helpful in
ameliorating the adverse effect of UV-B on growth and physiology of cotton plants especially in
ball retention. However, on similar plant no interaction was reported for photosynthetic
parameters by Zhao et al. (2004). Response on photosynthesis was very interesting; under the
ambient UV-B condition acclimation was reported by elevated CO,. Net photosynthesis was
increased when elevated dose of both the factors were applied simultaneously and this response
may be due to more utilization of photosynthate in protective measures. Similarly, Kakani et al.
(2004) have also not found any interaction between UV-B and CO, in cotton plant. However,
Qaderi et al. (2007) have reported that some of adverse effect of UV-B on reproductive
parameters can be mitigated by elevated CO, in Brassica napus. In C, plant Helianthus annuus,
Mark and Tevini (1997) have reported that doubling of CO, concentration may compensate or
surpass the harmful effect of UV-B. Likewise Zhao et al. (2004), Staaij et al. (1993) have found
elevated CO, acclimation under ambient UV-B and reverting the value of NAR back to the low
CO, level while under elevated level of UV-B reduction in growth was reported and NAR value
remained high which checks the negative feedback mechanism of an invasive plant Elymus
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athericus. Teramura et al. (1990) have observed that in combination, enhanced UV-B has
eliminated CO, induced increase in seed yield of wheat seed yield and total biomass of rice,
however both were increased in soybean plants. Similar to the above result of rice Ziska and
Teramura (1992) have also found elimination of CO, induced enhancement in biomass by
elevated UV-B. In contrast to biomass yield was increased with elevated CO, and UV-B
suggesting that yield can be the most conservative parameter with respect to CO, and UV-B
interaction whereas the relative decrease in biomass would be more as compared to the present
scenario of UV-B and CO,. Unlike the other studies Deckmyn et al. (2001) also used two different
levels of UV-B which are less than ambient (82 and 88%) under enhanced level of CO, and
observed that elevated level of CO, stimulated growth at reduced level of UV-B (88%) in
Trifolium repens.

Several mechanisms may be involved in modification of plant response to UV-B due to
CO, enrichment. Elevated CO, induces the production of more leaves and thus enhances leafarea
and in turn productivity of plants. UV-B induced damage to photosynthetic apparatus can also be
compensated by enhancement of CO, by increasing carbon availability, water use efficiency, and
Rubisco activity and also by reducing photosynthetic respiration (Sullivan and Teramura, 1994).
Elevated CO, is also known to enhance secondary metabolism which may increase the amount of
UV-B absorbing compounds (flavonoids, tannins, lignins etc.) which may reduce plant
sensitivity towards UV-B (Rozema et al. 1997, Penuelas et al. 1997). Two hypotheses may
function behind the CO, induced secondary metabolite synthesis. According to “carbon-nutrient
balance hypothesis”, increases in C/N ratio stimulate more production of carbon based secondary
compounds (Bryant et al. 1983). Similarly the “growth differentiation balance hypothesis" says
that any environmental condition (like elevated CO,) which differentially affects photosynthesis
(source) and growth (sink) will change the available carbon pool and synthesis of carbon based
secondary compounds (Loomis, 1932). Increasing atmospheric CO, increases the strength of
source and available carbon pool which in turn stimulate synthesis of secondary metabolites
(Penuelas and Estiarte, 1998). Increase in the level of carbon based secondary compounds
(tannin, lignin) provide protection to the plants against enhanced UV-B damage (Fig. 1).

UV-B and nutrient interaction

Various anthropogenic activities (industrial and agricultural) have significantly altered
the global nutrient cycle. Excessive loading and deficiency both can strongly affect the sensitivity
of plants towards other stresses. Mineral stress is defined as sub-optimal availability of essential
nutrient or toxicity due to excess of nutrients to plants (Lynch and Clair, 2004). Majority of world
agriculture is facing the problem of sub-optimal availability of nitrogen (N) and phosphorus (P).
However N deposition is increasing in many European countries, north-eastern United States and
China (Yao and Liu, 2006). Nitrogen is a major component for all the biochemical processes
operating in plants and also important limiting factor in those zones where UV-B fluence rate are
normally high (Riquelme et al. 2007). Some studies pertaining to interactive effect of UV-B and
nutrients on tree plants reported that under low nutrient supply plants show tolerance against UV-
B increment (Musil and Wand, 1994 on Dimorphotheca pluvialis), more than with optimal
nutrients (De la Rosa et al. 2003 on Betula pendula) and with high nutrient supply (Tosserams et
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al. 2001 Plantago lanceolata). Similar response was reported by Yao and Liu (2006) on tree
species Acer mono maxim in which N supply made plant more sensitive towards UV-B. Nitrogen
helped to increase the growth, antioxidants, lower the level of reactive oxygen species (ROS) and
intensity of harm but was not able to totally alleviate the effect of UV-B. Gymnosperm plant
Picea asperata, also responded similarly under same dose of UV-B (14.33 KJ/m’/day) and N (20
g/m’/area) (Yao and Liu, 2007). However, Yao et al (2008) doesn't found excess N to help in
photosynthetic impairment in similar plant. These responses are also species dependent. Levizou
and Manetas (2001) have noticed that slow growing Ceratonia siliqua doesn't respond against
low/high nutrients in presence of UV-B and this may be due to the requirement of longer exposure
time of both the stresses in order to get significant response. However, fast growing species
Phlomis fruticosa showed improved growth under high nutrient and enhanced UV-B. Inherently
slow growing species under nitrogen deficiency invest more carbon based secondary metabolites
and their growth promotion by additional nutrients would result in less investment into phenolics
and make plants more vulnerable to enhanced UV-B (Bryant et al. 1983, Levizou and Manetas,
2001). It is suggested that low nutrient availability induces synthesis of phenolics, condensed
tannins and flavonoids (querecitin, myricitin) which may afford protection against UV-B
radiation (DelaRosaetal. 2001., Lambers et al. 1993) According to carbon (C)/ nutrients balance
hypothesis by Bryant et al. (1983), deficiency of nutrients affect growth of plant more than
photosynthesis which result in diversion of assimilated carbon to production of secondary
metabolites (phenolics/terpenoids). However the study of Lavola et al. (2003) made on a
gymnosperm plant i.e. Pinus sylvestris reported that certain level of high nutrients (4 and 6%)
may deliver protection against ambient and near ambient UV-B by increasing flavonoids and
flavonols but carbon allocation to other branches of flavonoid pathway (catechin and tannin
formation) remain unchanged. Mineral stress negatively affects the sink strength which favors
synthesis of carbon based secondary compounds however according to Yeoman and Yeoman
(1996) deficiency of N causes growth limitation which enhances the level of secondary
metabolite (Fig 1). Enhanced level of secondary metabolite provides protection to plants against
UV-B damage. Wheat is one of the most important cereal crops. And three different studies on
wheat showed that increased level of nutrients provided protection against UV-B damage
(Rathore et al. 2003), at both recommended and 1.5 times recommended NPK (Agrawal et al.
2004) however Agrawal and Rathore (2007) found only recommended dose of NPK helpful in
ameliorating the negative effect of UV-B in wheat plants. Similar response was noticed by Singh
et al. (2009) on Amaranthus tricolor in which 1.5 times recommended dose of NPK helped to
minimize negative effect of UV-B while in Solanum tuberosum only recommended dose of NPK
was found to be the best for reducing the effect of enhanced UV-B (Singh et al. 2010). They
suggested that high nutrient supply enhanced the growth and thus invested more photosynthate
for protection. Plants have strategies to trade off between productivity and tolerance to stress.
Since high dose NPK increased plant tolerance to UV-B thus sustained higher yield (Singh et al.
2009). Correia et al. (2000, 2005) have observed that reduced N supply helped to minimize
negative effect of UV-B on growth, photosynthesis and yield of maize plants. Nitrogen stressed
plants generally have smaller leaves and low mersitematic activity. Since reduced level of cell
division increases opportunity for repairement of DNA dimmers before cell enters its synthesis
phase thus UV-B induced TT dimmers can be repaired to minimize its negative impact (Correia et
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al., 2000). Similar response was noticed even in case of leguminous crops. Nitrogen stress
rendered plant more tolerant towards UV-B by reducing leafarea and increasing amount of UV-B
absorbing compounds in Phaseolus vulgaris (Requilme et al. 2007, Pinto et al.1999). Musil et al.
(2003) have supplemented Podolyria calyptrate with nitrate which enhanced active metabolism
(photosynthesis and respiration) and made plant more sensitive towards UV-B. However,
Agrawal and Rathore (2007) have found recommended dose of NPK helping to alleviate the
deleterious effect of UV-B in Vigna radiata. A conclusion could be drawn from the results of all
the studies performed for low nutrient conditions especially N is a favoring condition to minimize
the harmful effect of UV-B radiation. Pinto etal. (1999) has given a hypothesis that under low N,
synthesis of protein was partially suppressed and turnover and catabolic protein degradation were
favored which in turn stimulated the deamination of L-phenylalanine leading to overproduction
of ammonia and cinnamic acid. Ammonia can be recycled into new proteins and cinnamic acid is
used as substrate in phenyl propanoid pathway for synthesis of flavonoids, anthocyanin and
various other secondary metabolites. Like NPK, iron (Fe) is an essential plant nutrient involved
in synthesis of various antioxidants (SOD), non-specific peroxidases, ascorbate peroxidase and
ascorbate-glutathione cycle. Zancan et al. (2008) have reported on Hordeum vulgare that Fe
deficient conditions also make plant sensitive towards UV-B. Unlike the response of terrestrial
plants to nutrients and UV-B, marine organisms showed a different trend. Under low level of N,
Myriophyllum spicatum and Dunaliella tertiolecta both showed increased sensitivity towards
enhanced UV-B (Lietal., 2005, Shelly et al., 2005).

UV-B and heavy metal interaction

Various studies have been conducted worldwide to evaluate the interactive effect of UV-
B with different heavy metals and they faced that in general heavy metals have ameliorating
effect to minimize the harmful effect of UV-B (Larsson et al., 2001, Liang et al., 2006, Chanjuan
etal.,2006). On the other hand Rai etal. (1995, 1998) have studied effect of two metals Cu and Pb
with UV-B on a cyanobacteria Anabaena doliolum and reported synergism between their
responses. UV-B exposed cells lead to changes in membrane permeability by peroxidation of
lipids and thus facilitated the uptake of Cu and Pb. Lipid peroxidation was identified to be the
main phenomenon behind the synergistic interaction of UV-B with Cu and Pb (Rai et al. 1998).
UV-B and Cu also altered the energy transfer system of phycobilisome, photosystem I and II,
respiration rate and Na+ and K+ leakage (Rai et al. 1995). UV-B and Cd have reduced
synergistically the level of photosynthetic pigments and in turn the photosynthetic electron
transport activity and oxygen evolution of Plectonema boryanum (Prasad and Zeeshan, 2005).
They suggested that involvement of similar and multiple sites of action by UV-B and Cd may be
the possible reason for their synergistic interaction. Bryophytes also impart sensitivity to various
changes in climate. Prasad et al. (2004) have reported additive effect of Cd and UV-B on Riccia
sp. but the response was modified when the high concentration of Cd was applied in presence of
similar dose of UV-B. Both the stress altered the photosynthetic activity of Riccia but the
inhibition of PS II was only reported in case of UV-B while the water splitting complex was more
susceptible towards Cd. Some other studies made with UV-B and Ni interaction on temperate
leguminous plants showed some very interesting outcomes. Prasad et al. (2005) have noticed
significant reduction in physiological characteristics and biomass production of soybean but
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their mode of interaction was less than additive except catalase (CAT) which showed suppressed
activity. However, Singh et al. (2009) have reported antagonistic response of UV-B and Ni on
pigments, proteins and antioxidants of pea except CAT which showed synergistic response.
Similar result was also reported by Mishra and Agrawal (2009) with UV-B and Cd on pea in
which CAT showed its additive response against both the stress. Nandi et al. (1984) have
suggested that degradation of tetrameric CAT molecule into monomeric subunits during stress
may be a major reason for decreased activity of CAT. Utilization of CAT in hydrogen peroxide
detoxification and its inactivation may be responsible for reduced CAT activity. In two different
studies of Larsson etal (1998, 2001) on two members of Brassicaceae family Brassica napus and
Arabidopsis thaliana, Cd was reported to be the more dominant stress as compared to UV-B and
many of the stimulatory effects of UV-B were overridden by Cd. UV-B and Cd altered the balance
of various nutrients such as Mg, Ca, P, Cu and K which was increased in shoots of both the test
plants while the concentration of S decreased in Brassica napus. Larsson et al (1998) have also
reported the reduction in concentration of UV screening pigments due to phytochelatin synthesis
in presence of Cd. GSH acts as signal transducer of UV-B stimuli for induction of UV screening
pigments, on the other hand GSH also act as precursor for phytochelatin synthesis therefore the
simultaneous application of both Cd and UV-B may lower the level of UV screening pigments
(Kalbin et al., 1997). The most pronounced effect of Cd+UV-B was reported on chl a/b ratio and
non photochemical quenching in rapeseed which may be explained by the inhibition in activity of
violaxanthin de-epoxidase in presence of Cd+UV-B (Larsson etal., 1998). Likewise the response
of Riccia, Shukla et al. (2002) have also reported that low concentration of Cd (1 ppm) did not
respond significantly in presence of UV-B however the higher dose (2.5, 5 ppm) caused
retardation in growth and chlorosis of wheat plants. In another study made by Mishra and
Agrawal (2006) on a leafy vegetable spinach, interactions of two heavy metals Ni and Cd
individually and in combination with UV-B were evaluated and observed that their mode of
interaction was always less than additive. Among both the metals Cd was found to be more
deleterious as compare to Ni when provided with UV-B. To assess the effect of UV-B and heavy
metal (Cd++), Nedunchezhian and Kulandaivelu (1995) have isolated chloroplast from Vigna
unguiculata and observed that UV-B supported the inhibitory effect of all applied doses (3,6,9
mM). Both UV-B and Cd induced the severe loss of 17, 23, 33 and 43 kDa proteins which are
responsible to inactivate oxygen evolving complex and thus affecting PS IT activity. On the other
hand PS I activity was only marginally affected. Rare earth metals are not serious environmental
pollutants. Acidic condition can cause mobilization leading to their enrichment in ground water,
river water etc. Neal et al (2005) have reported increased concentration of lanthanum (La),
cerium (Ce), yttrium (Y) and praseodymium (Pr) in rain fall, cloud water and ground water in mid
Wales, U.K. Some studies have also been conducted on interactive effect of rare earth metal and
UV-B on plants (Chanjuan etal. 2006 a, b, Liang et al. 2006). In the study of Chanjuan et al. (2006
a, b) on soybean and rapeseed Ce helped to lower or alleviate the damage caused by low level of
UV-B. In soybean Ce was capable of enhancing the capability of enzymes to scavenge free
radicals and thus protected the membrane system. Similar response was also reported by Liang et
al (2006) on soybean where La provided resistance to soybean towards UV-B with the help of
increased levels of flavonoids, chlorophyll content and PAL (phenylalanine ammonia lyase)
activity.
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Both UV-B and heavy metal follow more or less similar pathways for signaling inside
the plant cell. Being a nonionizing radiation UV-B infers both photomorphogenic and
nonphotomorphogenic response which can be low and high fluence dependent. However the
existence of UV-B receptors is potent question for decades. Previously it was thought that
phytochromes and cryptochromes are putative UV-B receptor. But the study of mutants which are
devoid of these photoreceptors showed influence of UV-B on hypocotyl elongation (Frohnmeyer
and Staiger, 2003; Bocalandro et al. 2001). Inferences from some important studies suggest that
UV-B receptor consist of a protein with a bound pterin or flavin as chromophores (Frohnmeyer
and Staiger, 2003) or they can be a factor like ULI3 (found in Brassicaceae family) which encodes
an unknown protein containing putative heme and diacylglycerol binding sites (Lariguet and
Dunand, 2005). Evidence of some membrane bound cell surface receptors, SR 160 (a peptide
systemin) was also given by Stratmann (2003) which is phosphorylated on the intracellular
kinase domain in response to UV-B resulting in activation of several defense signaling steps.
After the perception of signal photomorphogenesis can be induced by either UV Resistance
Locus 8 (UVRS), Elongandated hypocotyl (HY5) or HY5 Homolog (HYH) dependent or
independent pathways (Kaiserli and Jenkins, 2007; Brown and Jenkins, 2008).

Besides these undefined UV-B photoreceptors, existence of some cell surface bound
receptors has also been noticed. NOS (Nitric oxide synthase) was also identified as factor
responsible for upregulation of gene encoding chalcone synthase (CHS) (Jordan, 2002; Brosche
and Strid, 2003). NADPH oxidase gene GP31 that encode a plasma membrane protein showed
Ca'" dependent signaling of ROS in plants (Keller et al. 1998). NADPH induced ROS signaling
has been noticed in case of both UV-B (Rao et al. 1996; Jordan, 2002) and heavy metal (Foreman
et al. 2003; Maksymiec, 2007). Heavy metal induces H,0, accumulation either by stimulating
OXO (oxalate oxidase), NADPH oxidase or by displacing the transition metals from
metallochaperones or metalloenzymes and these released transition metals induces oxidative
stress (Polle and Schutzendubel, 2003). These transition metals can also activates genes
responsible for chperones and metallothioneins. In case of UV-B these ROS perform signaling
for the synthesis of jasmonic acid (JA), salicylic acid (SA) and ethylene (Mackerness et al. 1999).
JA along with ethylene synergistically induces expression of pathogenesis related PDF 1.2 genes
(Pannickx et al. 1998). However SA along with ethylene upregulate the expression of PR genes
(Jordan, 2002). Heavy metal induced H,O, accumulation can also trigger the mitogen activated
protein kinase (MAPK) cascade involving histidine kinase which in turn activate transcription of
defense genes (Polle and Schutzendubel, 2003). Some undefined cell receptors have also been
recognized with UV-B which follows MAPK pathway (Fig 2).

UV-B and water stress interaction

Water stress is one of the most obvious global issues like temperature and salinity that
affects the survival of agricultural crops. Drought is itself a metrological term that defines a
particular period of an area without significant rain fall. Generally drought arises when available
water in soil is reduced however the surrounding atmospheric condition causes continuous loss of
water either through transpiration or evaporation. The International Water Management Institute
estimates that by the year 2025, one third of the world population will inhabit regions of severe
water stress scarcity (IWMI, 2005). Since UV-B and water stress are globally accepted
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concurring problems of many parts of the world, their interaction should be discussed
extensively. Numerous studies have been conducted worldwide on the interactive effect of UV-B
and water stress on wheat (Feng et al. 2007, Alexiva et al. 2001), leguminous plants (Teramura et
al., 1984, Allen et al., 1999) and aromatic plants (Nogues and Baker, 2000) and noticed various
types of interactions. Net effects of these stresses are sometimes synergistic (wheat), additive
(soybean), adaptive (sunflower) or without any interaction (lavender, rosemary). Table 4.
represents overall type of interaction in different studies conducted so far. Teramura et al. (1984)
have found that UV-B more effectively changed biomass allocation however water stress reduced
leaf and node number of Glycine max and their combined effect was additive on dry matter
production and photosynthesis. However, Sullivan and Teramura (1990) have reported that UV-
B and water stress showed less than additive effect on photosynthetic parameters of same test
plant. Water stress induced masking of effect of UV-B may be due to anatomical or biochemical
adjustments (pigment accumulation) which ostensibly protect plants from UV-B through
screening mechanism. Drought may also delay cell divison and reduces cell elongation (Boyer,
1970). Since UV-B directly affects cell division thus delay in cell divison may provide protection
against UV-B. Another possibility is the development of reduced level of phosphorus in plant due
to water stress. In soybean plant Sullivan and Teramura (1990) have reported that phosphorus
deficiency in soybean plants directly reduces sensitivity against UV-B. On the other hand, Ren et
al. (2009) have observed antagonistic response of UV-B and water stress induced response on
yield of soybean. Another leguminous plant Pisum sativum showed differential response in
photosynthesis and productivity under water stress and UV-B. Nogues et al. (1998) noticed
synergistic mode of interaction of both the stresses in flavonoid production but UV-B induced
severity of photosynthesis was delayed by UV-B through reducing water loss rates, stomatal
conductance and leaf area. On the other hand, Allen et al. (1999) have observed that upto 30 %
increase of UV-B doesn't affect the photosynthesis and productivity under well watered and
droughted plants of pea. In the study of Yang et al. (2007) two different populations of a
leguminous plant Hippophae rhamnoides were showed that water stress had moderate response
of UV-B which is more pronounced in species growing at high altitude as compare to low altitude.
In wheat, UV-B and water stress synergistically induced specific changes in leaf morphology and
water relation leading to improved water economy which maintains photosynthetic performance,
biomass and yield (Feng et al. 2009). This synergism doesn't show any detrimental effect as
compared to their individual response. Increased root shoot ratio in response to UV-B may help to
offset water deficit while reduction in leaf area, LAI and induction of flavonoids may help to
counter balance effect of UV-B. However, Tian and Lei (2007) have reported that both the
stresses produced excessive ROS production leading to increased oxidative stress. UV-B
produced more severe response but their interactive response showed additive effect on wheat.
Similar response was also reported by Zhao et al. (2009) at 15% field capacity in water relation of
wheat plants. However, negative effect of UV-B was alleviated by mild water stress (0.5 MPa) in
both pea and wheat plants (Alexieva et al. 2001). Cechin et al. (2008) have also noticed
alleviation of negative effect of drought by UV-B on photosynthesis and transpiration. Cucumber
is relatively susceptible to unfavorable environmental conditions and is often chosen for studies
investigating the reaction to one or more stress factors. Kubis and Zajac (2008) have measured
antioxidative system of cucumber and reported synergistic response of UV-B and water stress.
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Enhanced activity of syringaldazine peroxidase (SPX) suggests intensification of cell wall
component synthesis and consequent increase in cell wall rigidity which provides tolerance
against drought stress. In Qurecus petraca two type of differential response were reported. UV-B
and water stress showed positive correlation in reducing fluorescence of oak while Meszaros et
al. (2005) have observed that UV-B radiation caused hardening of oak which ultimately provided
tolerance against water stress. Ren et al. (2007) have also studied response of two species of
Populas and reported that P. kangdingensis which is already adapted to drought condition exhibit
more tolerance to UV-B as compared to P. cathayana found at lower altitude. However, another
tree species Salix myrsinifolia showed additive effect on growth parameters (Turtola et al., 20006).
They have taken hybrids of Salix (fast growing and slow growing) and found that fast growing
species was more susceptible as compared to slow one. This response may be due to better
adaptability towards UV-B because of slow growth. Exposure of drought stressed species to UV-
B showed more allocation of biomass to root which improved water relation of plant and
provided protection against UV-B. Study of Schmidt et al. (2000) also showed that exposure of
UV-B moderates the response of water stress in Arabidopsis plants and mechanism behind this
response underlies in the maintenance of leaf water relation due to induced biosynthesis of stress
proteins and compatible osmolytes. On other hand Nogues and Baker (2000) have reported no
any significant interaction of UV-B and water stress on three Mediterranean plants lavender, olea
and rosemary.

Both UV-B and water stress alter the morphology, anatomy, photosynthesis and
metabolism of plant however their mechanism and site of action may be different. Both the stress
affects the light and dark reaction of photosynthesis at various steps; however their sites of action
may be different. The major mode of UV-B induced damage to photosynthesis is
photomodification of various components while for water stress the main deciding factor is
stomatal limitation leading to carbondioxide deficiency and alteration of some structural
components. Ability of any plant to tolerate stress condition also depends on multiple
biochemical pathways and their important products (active metabolite and specific proteins) that
may help to maintain plant homeostasis and to sustain their life. Plants have a common strategy
for protection against water stress is by accumulating compatible solutes and electrolytes
(osmolyte). Osmolyte are a group of biochemically inert compound which helps to maintain
osmotic balance necessary for growth and cellular metabolism under dehydration. Water stress
induces important metabolic changes including synthesis and accumulation of various
polyamines, polyols, proteins, pigments, amino acids, sugar, phenolics and amines.
Accumulation of these compounds in high concentrations raise cytoplasmic osmotic pressure
without perturbing cellular function and they also stabilize enzymes and membranes of plants
(Rathinasabapathi etal., 2000) which in turn provides protection against UV-B (Fig 3).

UV-B and O, interaction

Our present state of knowledge on combined effect of UV-B and O, on plants is very
limited. Earlier studies reported more reduction after sequential treatment of UV-B and O, in
pollen tube growth of Nicotiana tobaccum and Petunia hybrida as compared to their individual

effect (Feder and Shrier). However, Rao and Ormorod (1995) have reported that pre-exposure of
O, to Arabidopsis thaliana made plant more sensitive towards UV-B. Table 5. have summarized
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effect of UV-B and O, interaction on some plant species along with their dose and experimental
condition. Booker et al. (1994) have conducted three year field study (1989 to 1991) to assess the
effect of UV-B and O, on soybean plant. UV-B was not reported to be harmful for growth and
yield of soybean but O, showed significant reduction for all the studied parameters. UV-B
reduced the intensity of O, induced visible injuries initially but in last year no such interaction
was reported. Growth and yield parameters also showed no significant interaction between UV-B
and O, of the same plant. Ozone treatment consistently induced visible injury suppressed net
carbon exchange rate, growth, yield and accelerated reproductive development however
enhanced UV-B didn't suppress any of the above parameters. To study the mechanism of
differential response of both the factors, Rao et al. (1996) have used Arabidopsis thaliana and its
flavonoid deficient mutant for separate exposure of UV-B and O, and reported that both the
stresses induced oxidative stress and ROS production. UV-B preferentially enhanced NADPH-
oxidase and peroxidase related enzymes while O, induced SOD and enzymes of ascorbate-
glutathione cycle. Staaij et al. (1997) have studied effect of reciprocal exposure of UV-B and O,
on Elymus athericus and found both the stresses negatively affecting the growth of plant.
However, the mode of interaction was not clear but their combined response supported the
hypothesis that when changes in climatic condition will subject the plants to elevated levels of
UV-B and rising concentrations of tropospheric O,, the total result of both stress factors on plant
growth may be of an additive nature. Baumbusch et al. (1998) also explained that low UV-B
induced the protection against elevated O, in two gymnospermic plant (pines and spruce) and
found that pine was more sensitive however spruce is was protected by low level of UV-B.
Similar response of amelioration of O, response even in presence of ambient UV-B was observed
by Schnitzler et al. (1998) on similar coniferous plants. All these studies clearly indicate that
amelioration of effect may be seen only when concentration of single factor is elevating and the
other remain at ambient level. In another study of Tripathi et al. (2011) and Tripathi and Agrawal
(2012) simultaneously exposed linseed plants with elevated dose of both the stresses and reported
that these stresses lowered their negative effect in interaction as compared to individual
exposures.

Among all the studies considered in the present review, most of them were performed
under controlled and indoor conditions. Indoor experiments generally don't have sufficient
photosynthetically active radiation and thus exhibit reduced photolyase activity and DNA
repairing process (Caldwell et al. 1995). Since these studies are performed under laboratory
conditions and controlled practices which are little different from what plants experience in
natural field, further detailed research studies are needed to deepen the role of these abiotic stress
factors in the adaptive or changed response of plants to an UV-B enriched environment.

From these studies it can be predicted that the overall response of UV-B may be
modified in natural field conditions which is species specific. However from few studies, it is not
possible to predict a clear conclusion whether the response will be additive, synergistic or
antagonistic. Future interaction based studies are needed in natural filed conditions before we
come to definite conclusion.
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Interactive response of ultraviolet-B with other abiotic stress factors on plants
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Fig 1. Carbon dioxide and nutrient induccd alteration in source and sink balance
resulting in protection against UV-B
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Fig 2. UV-B and heavy metal induced signaling in plant cell
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(Abbreviations; 1. Photoreceptors, 2.Nitric oxide synthase, 4. NADPH oxidase, 5. Oxalate
oxidase, UVR 8; UV Resistance Locus 8, HY'S; Elongandated hypocotyls, HYH; HY 5 Homolog,
MAPK; mitogen activated protein kinase, JA; jasmonic acid, SA; salicylic acid, C,H,; ethylene,
ROS; reactive oxygen species, CHS; chalcone synthase)
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Fig 3. Induction of various enzymes after UV-B and water stress in synthesis of secondary
metabolites.

(Abbreviations; SAMDC; S- adenosyl methionine decarboxylase, SPMS; spermine synthase,
SPDS; spermidine synthase, PSC, '-pyrroline-5-carboxylate, PSCS; pyrroline-5-carboxylate
synthetase, P5CR; pyrroline-5-carboxylate reductase, PP-R-P; phosphoribosyl
pyrophosphatase, inps1; Inositol1-phosphate synthase, imp1, inositol monophosphatase, imt 1;
inosititol O-methyltransferase, ADC; arginine decarboxylase, ODC; ornithine decarboxylase,
PAL; phenyl alanine ammonia lyase, CHS, chalcone synthase)
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